小白分享,难者不会, 会者不难。在平常应用中,总会遇到ESPhome库中没有现成的设备驱动,导致项目停滞。看官网得知:ESPhome和Arduino关系紧密,ESPhome调用传感器的arduino库,实现传感器的驱动开发。正好手上有BMP180 气压和温度测量模块空闲。
1.先用官方库验证接线的传感器,均正常,可以在HA中接收到数据。具体不详说了,BMP180也是就085的库https://esphome.io/components/sensor/bmp085.html
2.自定义设备,按官网文档:https://esphome.io/components/sensor/custom.html
A. 在ESP主目录中(我的是:C:\Users\Administrator\esphome_config),创建h文件(my_custom_sensor.h):
B. h文件内容:
#include "esphome.h"
#include "Adafruit_BMP085.h"
class MyCustomSensor : public PollingComponent {
public:
Adafruit_BMP085 bmp;
Sensor *temperature_sensor = new Sensor();
Sensor *pressure_sensor = new Sensor();
MyCustomSensor() : PollingComponent(1000) { }
void setup() override {
bmp.begin();
}
void update() override {
// This is the actual sensor reading logic.
float temperature = bmp.readTemperature();
temperature_sensor->publish_state(temperature);
int pressure = bmp.readPressure();
pressure_sensor->publish_state(pressure / 100.0);
}
};
/*
SFE_BMP180.h
Bosch BMP180 pressure sensor library for the Arduino microcontroller
Mike Grusin, SparkFun Electronics
Uses floating-point equations from the Weather Station Data Logger project
http://wmrx00.sourceforge.net/
http://wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf
Forked from BMP085 library by M.Grusin
version 1.0 2013/09/20 initial version
Verison 1.1.2 - Updated for Arduino 1.6.4 5/2015
Our example code uses the "beerware" license. You can do anything
you like with this code. No really, anything. If you find it useful,
buy me a (root) beer someday.
*/
#ifndef SFE_BMP180_h
#define SFE_BMP180_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class SFE_BMP180
{
public:
SFE_BMP180(); // base type
//增加,用于外部调用
float readTemperature(void);
int32_t readPressure(void);
//end
char begin();
// call pressure.begin() to initialize BMP180 before use
// returns 1 if success, 0 if failure (bad component or I2C bus shorted?)
char startTemperature(void);
// command BMP180 to start a temperature measurement
// returns (number of ms to wait) for success, 0 for fail
char getTemperature(double &T);
// return temperature measurement from previous startTemperature command
// places returned value in T variable (deg C)
// returns 1 for success, 0 for fail
char startPressure(char oversampling);
// command BMP180 to start a pressure measurement
// oversampling: 0 - 3 for oversampling value
// returns (number of ms to wait) for success, 0 for fail
char getPressure(double &P, double &T);
// return absolute pressure measurement from previous startPressure command
// note: requires previous temperature measurement in variable T
// places returned value in P variable (mbar)
// returns 1 for success, 0 for fail
double sealevel(double P, double A);
// convert absolute pressure to sea-level pressure (as used in weather data)
// P: absolute pressure (mbar)
// A: current altitude (meters)
// returns sealevel pressure in mbar
double altitude(double P, double P0);
// convert absolute pressure to altitude (given baseline pressure; sea-level, runway, etc.)
// P: absolute pressure (mbar)
// P0: fixed baseline pressure (mbar)
// returns signed altitude in meters
char getError(void);
// If any library command fails, you can retrieve an extended
// error code using this command. Errors are from the wire library:
// 0 = Success
// 1 = Data too long to fit in transmit buffer
// 2 = Received NACK on transmit of address
// 3 = Received NACK on transmit of data
// 4 = Other error
private:
char readInt(char address, int16_t &value);
// read an signed int (16 bits) from a BMP180 register
// address: BMP180 register address
// value: external signed int for returned value (16 bits)
// returns 1 for success, 0 for fail, with result in value
char readUInt(char address, uint16_t &value);
// read an unsigned int (16 bits) from a BMP180 register
// address: BMP180 register address
// value: external unsigned int for returned value (16 bits)
// returns 1 for success, 0 for fail, with result in value
char readBytes(unsigned char *values, char length);
// read a number of bytes from a BMP180 register
// values: array of char with register address in first location [0]
// length: number of bytes to read back
// returns 1 for success, 0 for fail, with read bytes in values[] array
char writeBytes(unsigned char *values, char length);
// write a number of bytes to a BMP180 register (and consecutive subsequent registers)
// values: array of char with register address in first location [0]
// length: number of bytes to write
// returns 1 for success, 0 for fail
int16_t AC1,AC2,AC3,VB1,VB2,MB,MC,MD;
uint16_t AC4,AC5,AC6;
double c5,c6,mc,md,x0,x1,x2,y0,y1,y2,p0,p1,p2;
char _error;
};
#define BMP180_ADDR 0x77 // 7-bit address
#define BMP180_REG_CONTROL 0xF4
#define BMP180_REG_RESULT 0xF6
#define BMP180_COMMAND_TEMPERATURE 0x2E
#define BMP180_COMMAND_PRESSURE0 0x34
#define BMP180_COMMAND_PRESSURE1 0x74
#define BMP180_COMMAND_PRESSURE2 0xB4
#define BMP180_COMMAND_PRESSURE3 0xF4
#endif
/*
SFE_BMP180.cpp
Bosch BMP180 pressure sensor library for the Arduino microcontroller
Mike Grusin, SparkFun Electronics
Uses floating-point equations from the Weather Station Data Logger project
http://wmrx00.sourceforge.net/
http://wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf
Forked from BMP085 library by M.Grusin
version 1.0 2013/09/20 initial version
Verison 1.1.2 - Updated for Arduino 1.6.4 5/2015
Our example code uses the "beerware" license. You can do anything
you like with this code. No really, anything. If you find it useful,
buy me a (root) beer someday.
*/
#include <SFE_BMP180.h>
#include <Wire.h>
#include <stdio.h>
#include <math.h>
SFE_BMP180::SFE_BMP180()
// Base library type
{
}
char SFE_BMP180::begin()
// Initialize library for subsequent pressure measurements
{
double c3,c4,b1;
// Start up the Arduino's "wire" (I2C) library:
Wire.begin();
// The BMP180 includes factory calibration data stored on the device.
// Each device has different numbers, these must be retrieved and
// used in the calculations when taking pressure measurements.
// Retrieve calibration data from device:
if (readInt(0xAA,AC1) &&
readInt(0xAC,AC2) &&
readInt(0xAE,AC3) &&
readUInt(0xB0,AC4) &&
readUInt(0xB2,AC5) &&
readUInt(0xB4,AC6) &&
readInt(0xB6,VB1) &&
readInt(0xB8,VB2) &&
readInt(0xBA,MB) &&
readInt(0xBC,MC) &&
readInt(0xBE,MD))
{
// All reads completed successfully!
// If you need to check your math using known numbers,
// you can uncomment one of these examples.
// (The correct results are commented in the below functions.)
// Example from Bosch datasheet
// AC1 = 408; AC2 = -72; AC3 = -14383; AC4 = 32741; AC5 = 32757; AC6 = 23153;
// B1 = 6190; B2 = 4; MB = -32768; MC = -8711; MD = 2868;
// Example from http://wmrx00.sourceforge.net/Arduino/BMP180-Calcs.pdf
// AC1 = 7911; AC2 = -934; AC3 = -14306; AC4 = 31567; AC5 = 25671; AC6 = 18974;
// VB1 = 5498; VB2 = 46; MB = -32768; MC = -11075; MD = 2432;
/*
Serial.print("AC1: "); Serial.println(AC1);
Serial.print("AC2: "); Serial.println(AC2);
Serial.print("AC3: "); Serial.println(AC3);
Serial.print("AC4: "); Serial.println(AC4);
Serial.print("AC5: "); Serial.println(AC5);
Serial.print("AC6: "); Serial.println(AC6);
Serial.print("VB1: "); Serial.println(VB1);
Serial.print("VB2: "); Serial.println(VB2);
Serial.print("MB: "); Serial.println(MB);
Serial.print("MC: "); Serial.println(MC);
Serial.print("MD: "); Serial.println(MD);
*/
// Compute floating-point polynominals:
c3 = 160.0 * pow(2,-15) * AC3;
c4 = pow(10,-3) * pow(2,-15) * AC4;
b1 = pow(160,2) * pow(2,-30) * VB1;
c5 = (pow(2,-15) / 160) * AC5;
c6 = AC6;
mc = (pow(2,11) / pow(160,2)) * MC;
md = MD / 160.0;
x0 = AC1;
x1 = 160.0 * pow(2,-13) * AC2;
x2 = pow(160,2) * pow(2,-25) * VB2;
y0 = c4 * pow(2,15);
y1 = c4 * c3;
y2 = c4 * b1;
p0 = (3791.0 - 8.0) / 1600.0;
p1 = 1.0 - 7357.0 * pow(2,-20);
p2 = 3038.0 * 100.0 * pow(2,-36);
/*
Serial.println();
Serial.print("c3: "); Serial.println(c3);
Serial.print("c4: "); Serial.println(c4);
Serial.print("c5: "); Serial.println(c5);
Serial.print("c6: "); Serial.println(c6);
Serial.print("b1: "); Serial.println(b1);
Serial.print("mc: "); Serial.println(mc);
Serial.print("md: "); Serial.println(md);
Serial.print("x0: "); Serial.println(x0);
Serial.print("x1: "); Serial.println(x1);
Serial.print("x2: "); Serial.println(x2);
Serial.print("y0: "); Serial.println(y0);
Serial.print("y1: "); Serial.println(y1);
Serial.print("y2: "); Serial.println(y2);
Serial.print("p0: "); Serial.println(p0);
Serial.print("p1: "); Serial.println(p1);
Serial.print("p2: "); Serial.println(p2);
*/
// Success!
return(1);
}
else
{
// Error reading calibration data; bad component or connection?
return(0);
}
}
char SFE_BMP180::readInt(char address, int16_t &value)
// Read a signed integer (two bytes) from device
// address: register to start reading (plus subsequent register)
// value: external variable to store data (function modifies value)
{
unsigned char data[2];
data[0] = address;
if (readBytes(data,2))
{
value = (int16_t)((data[0]<<8)|data[1]);
//if (*value & 0x8000) *value |= 0xFFFF0000; // sign extend if negative
return(1);
}
value = 0;
return(0);
}
char SFE_BMP180::readUInt(char address, uint16_t &value)
// Read an unsigned integer (two bytes) from device
// address: register to start reading (plus subsequent register)
// value: external variable to store data (function modifies value)
{
unsigned char data[2];
data[0] = address;
if (readBytes(data,2))
{
value = (((uint16_t)data[0]<<8)|(uint16_t)data[1]);
return(1);
}
value = 0;
return(0);
}
char SFE_BMP180::readBytes(unsigned char *values, char length)
// Read an array of bytes from device
// values: external array to hold data. Put starting register in values[0].
// length: number of bytes to read
{
char x;
Wire.beginTransmission(BMP180_ADDR);
Wire.write(values[0]);
_error = Wire.endTransmission();
if (_error == 0)
{
Wire.requestFrom(BMP180_ADDR,length);
while(Wire.available() != length) ; // wait until bytes are ready
for(x=0;x<length;x++)
{
values[x] = Wire.read();
}
return(1);
}
return(0);
}
char SFE_BMP180::writeBytes(unsigned char *values, char length)
// Write an array of bytes to device
// values: external array of data to write. Put starting register in values[0].
// length: number of bytes to write
{
char x;
Wire.beginTransmission(BMP180_ADDR);
Wire.write(values,length);
_error = Wire.endTransmission();
if (_error == 0)
return(1);
else
return(0);
}
char SFE_BMP180::startTemperature(void)
// Begin a temperature reading.
// Will return delay in ms to wait, or 0 if I2C error
{
unsigned char data[2], result;
data[0] = BMP180_REG_CONTROL;
data[1] = BMP180_COMMAND_TEMPERATURE;
result = writeBytes(data, 2);
if (result) // good write?
return(5); // return the delay in ms (rounded up) to wait before retrieving data
else
return(0); // or return 0 if there was a problem communicating with the BMP
}
char SFE_BMP180::getTemperature(double &T)
// Retrieve a previously-started temperature reading.
// Requires begin() to be called once prior to retrieve calibration parameters.
// Requires startTemperature() to have been called prior and sufficient time elapsed.
// T: external variable to hold result.
// Returns 1 if successful, 0 if I2C error.
{
unsigned char data[2];
char result;
double tu, a;
data[0] = BMP180_REG_RESULT;
result = readBytes(data, 2);
if (result) // good read, calculate temperature
{
tu = (data[0] * 256.0) + data[1];
//example from Bosch datasheet
//tu = 27898;
//example from http://wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf
//tu = 0x69EC;
a = c5 * (tu - c6);
T = a + (mc / (a + md));
/*
Serial.println();
Serial.print("tu: "); Serial.println(tu);
Serial.print("a: "); Serial.println(a);
Serial.print("T: "); Serial.println(*T);
*/
}
return(result);
}
char SFE_BMP180::startPressure(char oversampling)
// Begin a pressure reading.
// Oversampling: 0 to 3, higher numbers are slower, higher-res outputs.
// Will return delay in ms to wait, or 0 if I2C error.
{
unsigned char data[2], result, delay;
data[0] = BMP180_REG_CONTROL;
switch (oversampling)
{
case 0:
data[1] = BMP180_COMMAND_PRESSURE0;
delay = 5;
break;
case 1:
data[1] = BMP180_COMMAND_PRESSURE1;
delay = 8;
break;
case 2:
data[1] = BMP180_COMMAND_PRESSURE2;
delay = 14;
break;
case 3:
data[1] = BMP180_COMMAND_PRESSURE3;
delay = 26;
break;
default:
data[1] = BMP180_COMMAND_PRESSURE0;
delay = 5;
break;
}
result = writeBytes(data, 2);
if (result) // good write?
return(delay); // return the delay in ms (rounded up) to wait before retrieving data
else
return(0); // or return 0 if there was a problem communicating with the BMP
}
char SFE_BMP180::getPressure(double &P, double &T)
// Retrieve a previously started pressure reading, calculate abolute pressure in mbars.
// Requires begin() to be called once prior to retrieve calibration parameters.
// Requires startPressure() to have been called prior and sufficient time elapsed.
// Requires recent temperature reading to accurately calculate pressure.
// P: external variable to hold pressure.
// T: previously-calculated temperature.
// Returns 1 for success, 0 for I2C error.
// Note that calculated pressure value is absolute mbars, to compensate for altitude call sealevel().
{
unsigned char data[3];
char result;
double pu,s,x,y,z;
data[0] = BMP180_REG_RESULT;
result = readBytes(data, 3);
if (result) // good read, calculate pressure
{
pu = (data[0] * 256.0) + data[1] + (data[2]/256.0);
//example from Bosch datasheet
//pu = 23843;
//example from http://wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf, pu = 0x982FC0;
//pu = (0x98 * 256.0) + 0x2F + (0xC0/256.0);
s = T - 25.0;
x = (x2 * pow(s,2)) + (x1 * s) + x0;
y = (y2 * pow(s,2)) + (y1 * s) + y0;
z = (pu - x) / y;
P = (p2 * pow(z,2)) + (p1 * z) + p0;
/*
Serial.println();
Serial.print("pu: "); Serial.println(pu);
Serial.print("T: "); Serial.println(*T);
Serial.print("s: "); Serial.println(s);
Serial.print("x: "); Serial.println(x);
Serial.print("y: "); Serial.println(y);
Serial.print("z: "); Serial.println(z);
Serial.print("P: "); Serial.println(*P);
*/
}
return(result);
}
double SFE_BMP180::sealevel(double P, double A)
// Given a pressure P (mb) taken at a specific altitude (meters),
// return the equivalent pressure (mb) at sea level.
// This produces pressure readings that can be used for weather measurements.
{
return(P/pow(1-(A/44330.0),5.255));
}
double SFE_BMP180::altitude(double P, double P0)
// Given a pressure measurement P (mb) and the pressure at a baseline P0 (mb),
// return altitude (meters) above baseline.
{
return(44330.0*(1-pow(P/P0,1/5.255)));
}
char SFE_BMP180::getError(void)
// If any library command fails, you can retrieve an extended
// error code using this command. Errors are from the wire library:
// 0 = Success
// 1 = Data too long to fit in transmit buffer
// 2 = Received NACK on transmit of address
// 3 = Received NACK on transmit of data
// 4 = Other error
{
return(_error);
}
// float SFE_BMP180::readTemperature(void) {
// unsigned char data[2];
// char result;
// double tu, a, T;
// data[0] = BMP180_REG_CONTROL;
// data[1] = BMP180_COMMAND_TEMPERATURE;
// writeBytes(data, 2); //写入指令
// //
// data[0] = BMP180_REG_RESULT; //获得RWS值
// result = readBytes(data, 2);
// if (result) // good read, calculate temperature
// {
// tu = (data[0] * 256.0) + data[1];
// a = c5 * (tu - c6);
// T = a + (mc / (a + md));
// }
// return(T);
// }
float SFE_BMP180::readTemperature(void) { //增加读取温值
char status;
double T,P,p0,a;
status = SFE_BMP180::startTemperature();
if (status != 0)
{
delay(status);
status = SFE_BMP180::getTemperature(T);
if (status != 0)
{
return T;
}
}
}
int32_t SFE_BMP180::readPressure(void) { //增加读取气压
char status;
double T,P,p0,a;
status = SFE_BMP180::startTemperature();
if (status != 0){
delay(status);
status = SFE_BMP180::getTemperature(T);
if (status != 0)
{
status = SFE_BMP180::startPressure(3);//采样等级3
if (status != 0)
{
delay(status);
status = SFE_BMP180::getPressure(P,T);
if (status != 0)
{
//获得正常值
return P;
}
}
}
}
}